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Abstract

In this paper we introduce definitions of distances defined by norms in linear
spaces in order to find optimal paths in free spaces with obstacles. Secondly,
Euler-Lagrange equations in the calculus of variation give the optimal solutions
for the problems of optimal paths. Thirdly we consider the linear structure in a
sets of fuzzy numbers and also introduce norms in f fuzzy linear spaces. Finally
we discuss optimal, i.e., shortest paths in free spaces including obstacles, with
fuzzy boundaries, because it is useful in getting shortest paths in realistic envi-
ronment with natural damage, for example, earthquakes etc.

1. Norm and Gauge

Location problems with barriers is interesting from a mathematical point of view
[K]. The nonconvexity of distance measures in the presence of barriers leads to

nonconvex optimization problems. Minkowski defined a norm and showed proper-

*Faculty of Engineering, Doshisha University
**Graduate School of Information Science and Technology, Osaka University
*##*(Jrban Planning Department, National Cheng Kung University

41



On Optimal Paths in Free Spaces Including Obstacles:*++*
ties of the norme (see [KJ):
Definition M1 (Minkowski 1911) Let S be a compact convex subset in R" contain-
ing the origin in its interior. Let S be symmetric with respect to the origin and let
X be in R". The norm 7:R" — R of x with respect to S is defined as

r(x) =inf{c>0: xEcS}.
We will often refer y(x) to ||x|].
Lemma ML1 (Minkowski 1911) Let 7 be defined corresponding to the above defi-
nition. Then X, yER" and cER, the following properties (i)-(ii) hold;

(i) yx)z0and [yx)=0 & x=0];

(i) y(ex) =lclrx);

Gi) r&x+y) =7 +7(y).

Every norm 7 defines a distance measure in R" in the following way :

&, Y =r&—y=lx—7vl,.
We will write d(x, y) instead of 7(X, y) and refer to the norm with the introduced
metric d as [+ la.

If the symmetry assumptions is dropped in the definition of s distance measure,
we obtain the more general concept of gauge.

Definition M2 (Minkowski 1911) Let S be a compact convex subset in R con-
taining the origin in its interior and let X be in R". The gauge 7:R" — R of x with
respect to S is defined as

7(x) =inf{c>0: x=cS}.
The following properties hold.

Lemma ML2 (Minkowski 1911) Let 7 be defined corresponding to the above
Definition D2. Then x, yER" and cER, the following properties (i)-ii) hold;

(1) r(®=0and [yx)=0 & x=0];

(i) rlex) =cr(x) (c=0);

Gi) r&x+y)=r+r().
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The above gauge is playing an important role in finding shortest paths in a space

with obstacles.
2. Euler-Lagrange Equation

Let a prescribed metric d be given in the n-dimensional space R". We assume
that the metric d is introduced by a norm ||*|l.:R* — R as d(x, y) =lIx—ylla.
Let {B), By, '*-, B} be a finite set of closed and pairwise disjoint sets in R* with
nonempty interior. Each set B, i=1, 2, -*+, N, is called a barrier (or obstacle) and
the union B=UX,B:. Let F=R"-int(B) be the feasible region (free space).
Definition P. Let X, v be in the free space F. A continuous curve P given by the
parameterization p= (py, P2, ***, Pn)", where T means the transpose, is a function
defined on the interval [0, 1] to R® with p(0) =x, p(1) =y that is continuous dif-
ferentiable on [0, 1] with the possible exception of at most a finite number of
points, where the derivative p’ has finite limits from the left and the from the right,
is called an x-y path. The length L(P) of the x-y path P with respect to the pre-
scribed metric d is given by

LP) = [y’ ®lldt.
If P does not intersect the interior of a barrier, i.e., p([0, 11) N int(B) =¢, the
x-y path P is called a permitted x-y path. The shortest path metric between two
points X, v in F is denoted by ds(x, y) =inf{L (P): P permitted x-y path}, which
is called a d-shortest permitted x-y path.

For simplicity we assume that the following conditions :

(1) B is one compact and convex barrier;

(2) the boundary 4B is (n-1)-dimensional smooth manifold in R" with

dB= {x in R":G(x) =0}, where G is twice continuous differentiable and

VG(x) #0.
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Under the above assumptions, the problem of finding a d-shortest permitted x-y
path is equivalent to the following minimization problem over all feasible and
piecewise continuous differentiable x-y paths P with parametrization p.

min [,F(t, p(0), p'(D)dt, F(&, p(®), p)=Ildp/dtll

st p(O) =z, p(D=y,

p(OEiInt(B) t=[0, 1.

In an example [K] in which G(x) =0 is unit circle we get the condition that a d-

shortest permitted x-y path P satisfies the following Euler-Lagrange equations.
We assume that G(z) = ;lxz.- -1

Theorem K. (Euler-Lagrange equation) A d-shortest permitted x-y path P sat-
isfies the following equations (a), or, (b);

(a) p satisfies the following Euler-Lagrange equations :

oF n_ d OF N i1 9 ... —p
E(ttpvp) dt aq] (trp)p) 0 (] 1) 2’ ,n),q p)

(b) p satisfies G(p) =0 and the following equations :
oF n__d OF . G N0 (=1 9 . —
o . 00— o 0,00 +2(D %, (=0 (i=1,2,-,n), g=p".

3. Fuzzy Normed Space

In this section we introduce a linear structure into sets of fuzzy numbers and de-
fine a norm in the fuzzy linear space. Denote I=[0, 1]. The following definition
means that a fuzzy number can be identified with a membership function.

Definition 1. Denote a set of fuzzy numbers with bounded supports and strict
fuzzy convexity by

$={u:R — I satisfies (i) — (iv) below.}

(i) 1 has a unique number mER such that £(m) =1 (normality) ;

(i) supp(u) =cl({EER: u(£) >0}) is bounded ER (bounded support);
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(iit) g is strictly fuzzy convex on supp(x) as follows:
(a) if supp(u) # {m}, then u(c£i+ (1 =)&) >min[u (&), £ ()] for, £,
£Esupp(w) with £# & and 0<c<1;
() if supp(x) = {m}, then z(m) =1 and 1 (&) =0 for E#m;

(iv) u is upper semi-continuous on R.

It follows that RC F'%. Because m has a membership function as follows :
p(m)=1; £(£)=0 for £#m.
Then ¢ satisfies the above (i)-Gv).
In usual case a fuzzy number x satisfies fuzzy convex on R, i.e.,
3D u(cti+(1—c) &) >minlu(£), p(£)]
for 0<c<1 and &, & ER.
Denote a-cut sets by L.(u) ={EER:u(¥) >a} for eE 1. When the membership
ftmcfion is fuzzy convex, then we have the following remarks.
Remark 1. The following statements (1)-(4) are equivalent each other, pro-
vided with (i) of Definition 1.
(1 (3.1 holds;
(2) La(p) is convex with respect to a €1;
(3) u is non-decreasing in £ E (— o, m), non-increasing in £€ (m, + ), re-
spectively ;

(4) L) CLs() for a>p.

The above condition (iiia) is stronger than (3.1). From (iiia) it follows that x (&)
is strictly monotonously increasing in £& [min supp(x), m]. Suppose that
©(ED) > u (&) for £<&E<m. From Remark 1(3), it follows that z(£) = (&) for
some £1< &;, so we get u (&) =u (&) =u (&) for EE [, £]. This contradicts with
Definition 1 (iiia). Thus # is strictly monotonously increasing. In the similar way
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( is strictly monotonously decreasing in £ € [m, max supp(ux)]. This condition
plays an important role in Theorem 1.

We introduce the following parametric representation of £ EF¥ as
x:i(a)=minL.(x), x.(@)=maxL.(rr) O<a=l)
and
x:(0) =minsupp(u), x.(0) =maxsupp().
In what follows we denote 1= (X, X2).

Denote by C(I) the set of all the continuous functions on I to R. The following

theorem shows that a membership function is characterized by X, X..

Theorem 1. Denote the left-, right-end points of the a -cut set of £ EFY by
x:(a), x.(a), respectively. Here x.:(a) and x:(a) are R-valued functions defined
on I The following properties (i)-(ii) hold.

(i) x, x,€CM;

(i) max {x:(@): e€ I} =x,(1) =m=min {x,(e): a €1} =x,(1);

(iii) X1, X, are non-decreasing, non-increasing on I, respectively and the one of
the following statements (a) and (b) holds:

(a) there exists a positive number ¢=1 such that
%1 (@) <x;(a) for € [0, c]
and that
x: (@) =m=x,(a) for a E[c, 1];

® x(@=x:(a)=mfora €L

Conversely, under the above conditions (i)-(ii), by denoting
p(®=suple€l:x,(e) LE<x(a))}

for EER, then L EF.

The proof is omitted.
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Remark 2. From the above Condition (i) a fuzzy number x= (x,, X,) means a

bounded continuous curve over R? and x,(a) £x,(a) for aEL

In what follows we denote ¢ = (X, X2) for uE F{. The parametric representation
of tEF% is very useful in calculating binary operations of fuzzy numbers and ana-
lyzing qualitative behaviors of fuzzy differential equations.

Let g: RXR — R be a function. The corresponding binary operation of two
fuzzy numbers X, YEFY to g(x, y): F§X F{ — F% is calculated by the exten-
sion principle of Zadeh. The membership function .,y of g is as follows:

Hetey (E) =sup {min [ (&), u,(E)]: E=g(&, £}
Here &, £, £ ER and u4, £y are membership functions of X, y, respectively. From
the extension principle, it follows that, in case where g(x, y) =x+7v,
Ly (E)

=max {mini-, . u;(&): E=E+E} where u1=ts, 2=ty

=max{aEl: E=E+E, & in L.(u) fori=1, 2}

=max {2€1: Einlx,(a) +y(), x.(a) +y.(a)]}.

Thus we get x+y= (x4, X:+v2). In the similar way X —v= (X1~ ¥z, X2~ v1).
Denote a metric by

de(x, y) =sup.ermax(|x:(a) —vi(@) |, [x:(a) —yz(a) )
for x= (x4, X2), y= (v, W EFY.

Theorem 2. F¥ is a complete metric space in C(D"

The proof is omitted.

In what follows we introduce a linear structure into the set of fuzzy numbers and
a norm over the fuzzy linear space. According to the extension principle of Zadeh,
for respective membership functions fx, 1, of X, YEFY and cER, the following
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addition and scalar product are given as follows :
Addition : x4y (&) =sup{a€ [0, 1]: E=E+& for £ in L.(¢) and & in
L.(u};
Scalar product: tex(§) =p(E/c) for ¢#0,
=0 for c=0 and £+#0,
=1 for c=0 and £=0.
In [PR] they introduced an equivalence relation (x,y)~(u, v) for (x,v),
(u, V)EFIXFY, ie,
&, v~ v) © x+v=u+ty.
Putting x= (X1, X2), y=(y1, v»), u= (u,, un), v=(v,, v») by the parametric repre-
sentation, the above equivalence relation means that the following equations hold :
xtv=uty (=1, 2)
Denote an equivalence class by
[x, y1={(u, VEFIXFY: (u, V)~ (x, )} for X, yEFY
and the set of equivalence classes by
F$XFY/ ~={[x, v]:x, yEF}}
such that the one of following cases (i) and (ii) holds:
(i) if (x, y)~(u, v), then [x, yl=[u, v];
(i) if not (%, y)~ (u, v), then [x, y1 N [u, vl=4¢.
Then F§X F$/~ is a linear space with the following addition and scalar product
x, y]+[u, vl=[x+u, y+vl;
clx, y1=1[cx, cy] for c=0,
=[(—=d)y, (—o)x] for c<0,
for cER and [x, v], [u, vVIEF{ X F$/~. They denote a norm EF§X F3/~ by
I, ylll=supaerda(Le(p0), La(y)).
Here du is the Hausdorff metric between compact subsets Lo(u) and L.(xy) is
as follows:
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du(LaCp), Lalt)) =max (supee s, inf e a0, | E- 7,
SUPse Lypinfre sy, | E—n ).
It can be easily seen that ||[x, y]ll=d.(x, y).
Note that ||[x, y]II=0 EF$X F¥/~ if and only if x=yEFY.

4. Discussion : Shortest Path in Free Space in Fuzzy Normed Space

In this section we discuss shortest paths in free spaces including obstacles with
fuzzy boundaries of fuzzy normed spaces. In case where finite many obstacles in a
free space we can find a shortest path permitted by applying Kalmroth’s theorem
in Section 2. In case where obstacles has uncertain boundaries, for example, after
an earthquake happens in the free space including obstacles, their boundaries may
be destroyed and we will have fuzzy information of the boundaries. Uncertain infor-
mation of boundaries may be considered as fuzzy. In order to apply optimization
theory and nonlinear functional analysis it is need to consider to optimization prob-
lems of finding shortest permitted paths in free spaces including obstacles with
fuzzy boundaries as fuzzy optimization problems in fuzzy normed spaces of Section
3.

In the future studying we are proposing an algorithm for fuzzy optimization prob-
lems of finding shortest permitted paths in free space including obstacles with fuzzy

boundaries by applying the calculus of variation to fuzzy normed space.
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