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Abstract.

In this paper, a higher order Markov property on a directed tree is
studied. Recursive formulae of the conditional probability generating
functions for deriving the exact distributions of numbers of non-overlapp-
ing “1”-runs of length % on a higher order Markov tree are obtained.
Furthermore, we explain how to calculate the probability functions on
higher order Markov tree with illustrative examples.
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1. Introduction

Recently, Aki (1999) derived the exact distributions of the number of
non-overlapping “1”-runs of length k on a directed tree, whose vertices are
assumed to be {0,1}-valued random variables which follow a directed
Markov distribution (Lauritzen (1996), p.52).

In this paper, we introduce a higher order Markov tree to model a
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On number of occurrences of runs in a higher order Markov tree
complex dependent structure on a directed tree.

Let T be a directed tree and let V be the set of the vertices of 7. We
assume that {X,, v€ V} is a collection of {0, 1}-valued random variables
indexed by the vertices of T. Then, on the assumption that the collection of
{0, 1}-valued random variables on the directed tree is a higher order Markov
tree, we derive the exact distributions of numbers of “1”-runs of a specified
length.

To solve the problems, we adopt the method of conditional probability
generating function (pgf)’s. Since the method of conditional pgf’s was
introduced by Ebneshahrashoob and Sobel (1990), many researchers utilized
the method to solve various problems (see Aki (1992), Uchida and Aki
(1995), Aki et al (1996), Balakrishnan ef @l (1997), Han and Aki (2000)
and others).

We give in Section 2 the definition of a homogeneous higher order
Markov tree. A recursive formula for deriving the exact distribution of the
number of non-overlapping “1”-runs of length 2 along the direction is
obtained on the higher order Markov tree. By using the systems of equations
of the conditional pgf’s recursively, we can obtain the pgf’s of the distribu-
tion of the number of non-overlapping “1”-runs of length % on the higher
order Markov tree. Further, we illustrate in detail how to derive the pgf’s
of the distributions of the numbers of non-overlapping “1”-runs of length £
on the higher order Markov tree with an example.

In Section 3, we illustrate how to compute the probability function of the
distribution of the number of non-overlapping “1”-runs of length % from the
recursive formulae obtained in Sections 2. It is very easy to obtain the
probabilities from the recursive formulae by using some computer algebra
systems. As an illustrative example, we compute the probability function of
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the number of non-overlapping “1”-runs of a specified length when a
directed tree is (i) independently and identically distributed (#d), (ii) a

first order Markov tree, (iii) a second order Markov tree, respectively.

2. Number of non-overlapping “1”-runs of length k&

on higher order Markov tree

Let T be a directed tree and let V be the set of the vertices of 7. The
vertices are assumed to be labeled in increasing order away from the root
of the tree so that a vertex is preceded by its ancestors. We denote by v (%)
the vertex labeled # and denote by N (v) the number of a vertex v. Let v (1)
be the root of T and pa: V\{v (1)} V be the map from every vertex v to
its parent. We fix any vertex v except for the root. Suppose that the vertex
vhas a(v) ancestors, v?, 2% -+, 2@ (=v(1)) with pa(v/) =v/*! for j=1, -,
a(v) —1. We define that a(v (1)) =0. Then, the map a: V—Z* from every
vertex v to the number of ancestors of v is defined. We assume that {X,,
ve V} is a collection of {0,1}-valued random variables and nr=|V],
gr=max{a(v); v V} (the maximum length of the paths in 7). Here, for
the basic notations in graphical models, see Lauritzen (1996), Ripley (1996)
and Aki (1999).

Let E,, be the totality of {0, 1}-sequences of length £ less than or equal to

m.

Definition 2.1. (the m-th order Markov tree) Let m be a positive integer
less than g7 {X, ve V} is a homogeneous m-th order Markov tree if it
satisfies the following conditions:

(i) there exists 0<p <1 such that P(X,q=1) =p;

(ii) for every {0, 1}-sequence e€ E,,, there exists a real number 0 <P (e) <1
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which satisfies the following condition:

for every n=2, -, nr, if a(v(n)) =7<m, then

PXyw=11Xu-ns = Xow=e))
=P X yn= 11X powom =€xpawem: Xp”)(”("»=e,\r(pul wmn (=e))
=p(le Nodwmy e vpawam)

for every n=2, -, nr, if a(v{n)) =7 2m, then
P(Xv(n)=l |Xv(n—l)=en—l» Y Xu(l)=el

=P(X,m=11Xpom=2npawom " X e

pa™ ey € Npa™ e

=D ypam w7 ENGawam),
where pa’ means the j-th composition of the map pa.
For every vertex v, we denote by ¢(v) the number of children of » and if
c(v) >0, we denote the children of v by vy, vg, ', e(ny. Let T, be the
(directed) subtree which consists of the vertex v (the root of the subtree)

and of all of the descendants of ». V, denotes the set of the vertices of 7.

n
O
n+1
n-+2 6
n+3 n+4
n+5 n+6

Figure 1: An example of a directed tree
Let v be any vertex. Then, from the definition of the homogeneous m-th
order Markov tree, we see that {X,, we V,,}, -, and { X, we V,,,,} are
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conditionally independent given (X, X, -, X,4), where b=min{a(v),
m—1}. We shall illustrate this fact with an example. For simplicity, we let
m=2 and consider the part of the directed tree given in Figure 1.’ By using
the definition of the homogeneous second order Markov tree, we have for

EVery e, e, éx "+, &,

PX,.2=e,, Xys=e3, Xpu=eq, Xyis=es, Xps=es| X, =e,
Xpn=e))
=PX,.2=e3}X,=e, X,.1=¢)) PX,.3=e3|X,=e, X,.1=¢,,
Xarz=e2)
PXy=e | Xp=e, X,1=¢,, X,x=e;3, X,3=€3)
PX,s=es|X,=e, Xpii=e,, Xy2=e2, X,a=e3, X, ry=ey)
PXpe=eglXn=e, Xpu1=e), Xni2=e,, Xyiz=e3, Xpi=ey,
Xys=€s)
=P(X,.:=e;|X,=¢, X,.1=¢)) PX,.s=e3|X,=e, X,..1=¢))
PX,=e | X,=e, X,o1=¢))
PXps=es| (X, =e), Xyn1=e,, X,p=e))
P(Xe=esl (X,=¢), Xuu1=e1, X r2=¢)
=PX,.2=€,, X,i5=e5, Xpus=eg|X,=¢, X\, 1=¢))
PX,.3=ey|X,=e, Xyo1=¢)) PX,y=e,| X—e, Xpa=e)).

Let %2 and m be positive integers. Assume that {X,, v€ V'} is a homogene-
ous m-th order Markov tree defined above. Let ¢(#) be the pgfof the distri-
bution of the number of non-overlapping “1”-runs of length % along the
direction in {X,, v € V}. For every vertex » except for the root v (1), every
ecE, and £=0,1,--, k—1 we let ¢(v,e,£; t) be the pgf of the conditional
distribution of number of non-overlapping “1”-runs of length % along the
direction in { X,,, w € V,} given that at the vertex pa(v) a “1”-run of length
£ is observed and the current outcomes until pa(v) is e. For e=0,1 and
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e= (e, e, ', ¢;) (157 < m), we define

(e, ", e;, e), flsj<m,
flea={ " Y !

(2, -+, e, ), ifj=m.

Theorem 2. 1. Under the above assumptions, the pgf’s satisfy the following

recurrence relations;

qc;f:(l:))qi(v(l);, (0), 05 %) ifc((1))>0 and k> 1,
wdy
+p 11w, () 10
d)=14a jIj] @ (1), (0), 0;9) ifcw(l)>0and k=1, (2.1)
4t {1 g (1), (1), 0:0
qg+pt ifcw(l))=0and k=1,
1 if ¢(v(1)=0and k> 1,

for 2% v (1),
a1l #;. 7,0, 0:1) if c()>0 and £<k~1,
+p @1l # 5, e, D241
S0, e L;0)= q(e)clif’qs(v,,f( 0),0;8) ifc()>0andf=k-1, (2.2)

@1 p ;. fle 1, 0
)+

ple)t ifcw)>0and £=k—1,
1 ifcw)>0and £<k—1,

qle

where g=1—q and g{e) =1—p(e).

Proof. First, we assume that c(v(1)) >0 and 2>1. Then, from the defini-
tion of the homogeneous m -th order Markov tree, Xy, =", XoW oy are
conditionally independent given X,q). Further, from the above example
with Figure 1, we see that {X,, we V,u,}, *, and {Xu, w € Vo) are
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conditionally independent given X, (. Note that the number of “1”-runs of
length % observed in {X,, v€ V} is the sum of the numbers of “1”-runs of
length £ observed in {X,, we V,@,}, ", and {Xw, wE V,(.ay)- There-
fore, the first equation of (2.1) holds. Next, in case of £=1, we can observe
a “1”-run of length 1 at v (1) the root. Hence, if ¢(v (1)) >0 then we obtain
the second equation of (2.1). If ¢(v (1)) =0 then we obtain ¢(¢) =q+pt. If
c¢(v(1)) =0 and £>1 then we can not observe “1”-runs of length % at v (1)
the root and we obtain ¢(#) =1. Thus, we have (2.1).

For any vertex v except for the root, we let ¢(») >0 and £<k—1. Then,
from the definition of the homogeneous m-th order Markov tree and the
above example with Figure 1, we can see that {X,, w & V,,}, --, and { X, w
€ V,..,} are conditionally independent given (X,, X1, -+, X,), where b=
min{a (), m—1}. Since the number of “1”-runs observed in {X,, we V,}
is the sum of the numbers of “1”-runs observed in {X,, w€ V,}, -, and
{Xw, we V,,,}, the first equation of (2.2) holds. In case of £=k—1, we
can observe a “1”-run of length k at v (the root of V,). Hence, if c(v) >0
then we obtain the second equation of (2.2). And if ¢(v) =0 then we obtain
P(v,e,8;t)=q(e)+p(e)t If c(v) =0 and £<k—1 then we can not observe
“1”-runs of length % at v (the root of the subtree) and we obtain ¢(v,e,/;

) =1. Thus, we have (2.2). This completes the proof.

Remark 2. 1. In fact, the boundary conditions of the recurrence relations in
Theorem 2.1 are given at every leaf since c(v) =0 is observed at every
leaf. However, by taking account of the length of the remaining subtree at
every vertex, we can add another type of boundai‘y conditions; for £=0, -+,
k—1 and gr, (the maximum length of the paths in 7,), ¢(v,e,£; H) =1 if
£+gr,<k

105



On number of occurrences of runs in a higher order Markov tree

Remark 2.2. Letting £=1 in Theorem 2.1, we obtain the distribution of
the number of “1” in the m-th order Markov tree. In particular, when £=1
and p=pl(e) (éid case), we see that ¢(f)=(g+pH)Y, where N is the
cardinality of V. This is the usual binomial distribution.

Remark 2. 3. Letting m=1 in Theorem 2. 1, we obtain the distribution of
the number of non-overlapping “1”-runs in the Markov tree.

Remark 2.4. When ¢(v) =0 or 1 for every ve V in Theorem 2.1, the
directed tree reduces to a sequence of a finite length and hence we can ob-
tain the distribution of the number of non-overlapping “1”-runs in the m-th

order Markov chain.
3. Computational aspects

Let { X, v€ V} be a collection of {0, 1}-valued random variables indexed
by the vertices of a directed tree with a higher order Markov tree is given.
In this section, we illustrate here how to count the number of non-overlapp-

ing “1”-runs of length % by using the following example.

Uy v
v 23 37 Vss
I
Uy Voo v
Vg vy © Vgg Vs o !
o
U v v
Ve 3vy 10 $2 Vs 53
a E v 35 Vs
20
Uy Vg vg 4o o Vg v 1)32
v Uq 19 - 9
13 Va
33
Uy Vs Y17y Vs
d 18
Vis oV 32
Van
V1
Uy Vs Vg Vg Vo \Vs3i e 10
A Uzsv Vs
29
v
% Vg g Vi U
TV Vg v
43

Figure 2 : A realization of a collection of binary random variables
indexed by the vertex set of a directed tree
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Example 3. 1. Figure 2 shows an example of a realization of a directed tree
of binary ({ @, O}-valued) random variables. We illustrate how to enumer-
ate the number of non-overlapping “ @ ”-runs of length 3 on the directed
tree of Figure 2. First, we adopt the non-overlapping counting method
along the direction in every path from the root.

When a collection of {0, 1}-valued random variables indexed by the verti-
ces of a directed tree with a higher order Markov tree is given, Theorems
2.1 indeed provide algorithms for deriving the pgf’s of the distributions of
the numbers of “1”-runs of a specified length, respectively. We illustrate
here how to derive the pgf’s by using the following example.

Example 3.2. We calculate the pgf’s of the distributions of the numbers of
“1”-runs of length 3 on the directed tree of Figure 3. We assume that X,
7=1, -+, 20 has the second order Markov tree. For the moment, we think

the case of non-overlapping counting.

Vig

Vg Vs

v_
E Vg Uq
Ui V)2

Figure 3 : An example of a directed tree

Since the root v; has the children {v, vs, v4}, we have from the first
equation of (2.1)
Pu, () =q¢ (v, (0), 0; )¢ (3, (0), 0; )¢ (vy, (0), 0; )
Tpp w2, (1), 1; )@ (vs, (1), 1; @ vy, (1), 15 0).
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Next, noting that the vertex v; has children {uvs, vs}, we have
¢ (vs, (0), 0;)=q(0)¢ (vs, (0, 0), 0; )¢ (v, (0, 0), 0 2)
+p(0)¢(vs5, (0, 1), 1;0) ¢ (v, (0, 1), 1, 0),
¢ vy, (1), 1;0)=qg (1)@ (vs, (1,0), 0; ) (ve, (1, 0), 0;2)
+p(D s, (1, 1), 2,0 s, (1, 1), 2;2).
Since the vertex vs does not have a child, from the last equation of (2.2),
we have ¢(vs, (0,0),0; 1) =1, ¢(vs, (0,1),1; #) =1 and ¢(v5, (1,0),0; ) =1
Further, from the third equation of (2.2), we have ¢(vs, (1,1),2; t) =¢(1,1)
+p(1,1) &. From Remark 2.1, we observe ¢(uvg, (0,0),0; ) =1, ¢(vg, (1,0),
0; #) =1. Further, by using the all equations of (2.2), we have
¢ e, (0, 1), 1;)=q(0, D+p(0, )p vy, (1, 1), 2, b (012, (L, 1), 27 0),
P e, (1, 1), 2, )=q(1, N+p(1, Dt
Here, from the third equation of (2.2), we have
¢y, (1, 1), 2;9=q(l, H+p(L, 1)¢,
dy, (1, 1),2;0=q(l, )+p(1, 1)t
Consequently, we obtain
¢ (s, (0), 0; =g (0)+2(0)(g(0, )+p(0, 1)(g (L, D+p(L, 1)),
¢ s, (1), 1;)=g()+p(D(g(1, D+p(L, D).
Similarly, we have
$(vs, (0), 0;8)=1,
P, (1), 1; )=g()+p(1)(g(L, 1)+p(1, 1)2),
¢ (v, (0), 0; )=g(0){g (0, 0)(g (0, 0)+»(0, 0)(g (0, 1)
+p(0, D{g(1, )+p(1, 1)) +p(0, 0)(¢(0, 1)
+2(0, Dig(l, D+p (L, 1))}
+2(0){g (0, 1) (g (1, 0)+p (L, 0)(g(0, 1)
+p(0, D(g(1, 1)+p(1, 1))
+p(0, D(g(1, D+p(L, 1)1)’}
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X{g (0, 1)+p(0, 1)(g (1, 1)+p(1, 1))
x{g(0, )+ (0, 1)(g(1, D+p(1, 1)&)},
$ (s, (1), 1;0)=g(D{a (L, 0)(g(0, 0)+p(0, 0)(g(0, 1)
+2(0, 1)(g(1, D)+p(1, 1))
+p(1, 0(g(0, D+p(0, 1)(g(1, )+p(1, 1))
+p (g (L, 1)(g(1, 0)+p (L, 0)(g (0, 1)
+p(0, Dig(l, 1)+p(1, 1)1)
+p (1, De(g(1, D+p(1, 1)(g(L, 1)
+p(1, 1 (g(l, +p(1, D)}
x{g(1, D+p(1, 1)

Therefore, we have

¢, (0=alg(0)+p(0)(g (0, 1)+p(0, 1)(g(1, D+p(L, 1)1)*)]
x[g(0){g (0, 0)(g (0, 0)+(0, 0)(g(0, 1)
+p(0, 1)(g(1, D+p(1, 1))
+(0,0)(g(0, 1)+ (0, (g (L, 1)+p(1, 1))}
+p(0){g (0, 1)(g (1, 0)+p (1, 0)(g (0, 1)
+2(0, 1)(g(1, 1)+p(1, 1))
+p(0, (g (L, +p(1, DH*x{g(0, D+p(0, 1 (g(L, 1)
+p(1, DO x{g(0, D+p(0, D(g(L, D+p(1, D))
+pla(M+p (M) (@(1, D+p(1, D)
X[g(M)+p(1)(g(1, D+p(L, 1)
X[g(1){g(1, 0)(g(0, 0)+»(0, 0)(¢(0, 1)
+2(0, D{g(1, 1)+p(1, 1)8)
+p(1,0)(g(0, 1)+5(0, D(g(1, D+p(1, 1))}
+p (g (L, 1) (g (1, 0)+2(1, 0)(g (0, 1)
+p(0, 1)(g (1, 1)+p (1, 1)#)
+p(1, De(g(1, D+p (L Dg(L 1)
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+2(L D(g(1, )+p(1, )N
x{g (1, D+p (1, DL

The pgf’s are polynomials with respect to ¢ For deriving the probability
functions, we only take out the coefficients of # of the expanded pgf’s.
Indeed, we calculate the probability function of the distribution of the
number of non-overlapping “1”-runs of length 3 on the above second order
Markov tree. Letting N be the number of non-overlapping “1”-runs of
length 3, we obtain P(N=0), -, P(N=8) from ¢,,(#). Since the probabil-
ity functions are very long and may not be suitable for filling all the
polynomial in this place, we give the probability functions in Han and Aki
(1999).

Theorems 2.1 indeed provide algorithms for the corresponding com-
putations. In fact, it is easy to convert the theorems to recursive procedures
available in some computer algebra systems. Though we used in Example
3.2 the directed tree of very small length with only 20 vertices to illustrate
how to derive the pgfof the second order Markov tree, the size of a directed
tree is not a problem if we input the directed tree to a computer by using a
standard method like adjacency list representation. Indeed, we can treat the
corresponding computational results for the directed tree with 55 vertices of
Figure 2. The pgf of the distribution of the number of non-overlapping “1”-
runs of length 3 on the directedv tree becomes a polynomial in ¢ of degree 23,
which is very long and may not be suitable for printing all the polynomials.
Nevertheless, it is very easy to obtain the probabilities from the pgf by

“means of some computer algebra systems. In fact, most of the computer
algebra systems are excellent in expanding polynomials and in taking out
the coefficients.

First, we obtain the probability functions of the numbers of non-overlapp-
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ing “1”-runs of length 3 along the direction on the -valued second order
Markov tree by using the directed tree of Figure 2. By setting p=0.5,
p(0)=0.5, p(1)=0.6, p(0,0)=0.5 »(0,1)=0.6, p(1,0)=0.6, p(1,1)=0.7,
from Theorem 2.1, we have the probability functions of the numbers of
non-overlapping “1”-runs of length 3 along the direction on the {0, 1}-valued
second order Markov tree with 55 vertices. Figure 4 shows the bar graph of
the probability functions of the numbers of non-overlapping “1”-runs of

length 3 along the direction on the {0, 1}-valued second order Markov tree.

0.14 — T T T

0.12 - M 1 -
0.1 - =
0.08 4
0.06 - -
0.04 |-

0.02
OIHH I L Hﬂﬂmnn !

0 5 10 15 20

Figure 4 : the probability function of the number of non-overlapping
“1” -runs of length 3 along the direction on a {0, 1} - valued
second order Markov tree with 55 vertices

1

Next, we have the probability function of the number of non-overlapping
“1".runs of length 3 along the direction on the {0,1}-valued first order
Markov tree by using the directed tree of Figure 2 when p=0.8, p(0) =0.4,
(1) =0.8. Figures 5 shows the bar graphs of the probability function of the
number of non-overlapping “1”-runs of length 3 along the direction on the
{0, 1}-valued first order Markov tree. Further, we have the probability
function of the number of non-overlapping “1”-runs of length 3 along the
direction when the directed tree of Figure 2 is #d and p=0.8. Figures 6

111



On number of occurrences of runs in a higher order Markov tree
shows the bar graphs of the probability function of the number of non-
overlapping “1”-runs of length 3 along the direction when the {0, 1}-valued

directed tree is #id.
4. Conclusions

In the above approaches, we can see that the method of conditional prob-
ability generating functions is véry useful for investigating the runs
problems on a directed tree. Although the resulting system of equations of
conditional probability generating functions is no longer linear and has
complex structure, it is too easy and fast to obtain the probabilities from
the algorithm of pgf by means of some computer algebra systems. The
main purpose of this paper is to show how to use the method of conditional

probability generating functions.

0.12

0.1 Ny _

Lol L ITRNND .,

0 5 10 15 20

Figure 5: the probability function of the number of non-overlapping
“1" -runs of length 8 along the direction on a {0, 1} -valued
first order Markov tree with 55 vertices
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0.14 T T T T

=1
o o
[=p) (=]
T T
]

oL,

0 10 15 0

Figure 6 : the probability function of the number of non-overlapping
“1” -runs of length 8 along the direction when the {0, 1}
-valued directed tree with 55 vertices is iid
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