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Invexity was introduced as an extension of differentiable convex functions
due to Hanson [6]in 1981. The idea plays an important role in analyzing vari-
ous types of mathematical programming in which both feasible sets and objec-
tive functions are convex. For example, convex functions and affine functions
are invex ones. In 1990 Karamardian et al [8] proved that generalized convex-
ity of functions was equivalent to monotonicty of its gradient functions. It is
said that the role in generalized monotonicty of the operator in variational in-
equality problems corresponding to the role in generalized convexity of objec-
tive functions in mathematical programming. Variational inequalities arise in
models for a wide class of engineering or human sciences, e. g., mathematics,
physics, economics, optimization and control, transportation, elasticity and
applied sciences, etc. In this article we consider mathematical optimization
problems and variational inequality problems. Finally we discuss the existence
of Walrasian equilibrium of excess demand functions defined some feasible
sets provided with invex properties.
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1. Introduction

Consider the following mathematical problem
minf(x) subject to xin C, (MP)
where a feasible set Cin R" and an objective function f: C— R.

Here R and R” are the set of real numbers, #-dimensional linear space,
respectively. Problem (MP) is a particular case of the following varia-
tional inequality problems. In this paper we introduce an approach by
applying the invex idea and to (MP) and the below problem variational in-
equality problems to x; in C satisfying

(y—2x0)TF(x,) 20 for yin C, (VIP)
where a function F: C— R" and x7 is the transpose of x. If fis differentiable
and F(x) =Vf(x), then (VIP) means (MP). According to the similar way
as [9] we treat definitions of invexity in Section 2. QOur aims are to solve
variational-like inequality problems via the invex method (see Section 3)
and to discuss invex feasible sets which are extended from the convex sets
(see Section 4). In Section 5 we deal with applications to exchange price
equilibrium. Finally, in Section 6 we give concluding remarks where we
mention that it is possible to establish criteria for solutions to variational-

like inequality problems corresponding to exchange price equilibrium.
2. Monotonicity and Invexity

In order to find optimal solutions for mathematical problems by finding
solutions to variational inequality problems and those to variational-like
inequality problems [9] discusses variationals of monotonicity and invexity.
Definition 1 A function F: M— R" is said to be monotone(M) on C if each
x, vin C, then it follows that
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(y=2)"(F(y) —F(x)) 20.
A function Fis said to be pseudo monotone (PM) on Cif each %, y in C such
that (y—x)7F(x) 20, then (y—x)"F(y) 20.
It follows that (M) means (PM) immediately. In [7] the following theo-
rem is given as follows.
Theorem K A differential function fon an open set C is convex if and only
if Vfis monotone on C.
Definition 2 A function F'is said to be invex monotone (IM) to a function
7. C*—> R™ if for each %, y in C it follows that
7(3, 0T[F(y) —F(x)]20.
Fis said to be pseudo invex monotone (PIM) to a function #: C*— R™ if for
each %, y in Cwith #(y, x)7F(x) 20, then »(y, x)"F(y) 0.
When Fis (IM) to #(y, x) =y—x, it means that (IM) is (M). It follows
that (IM) means (PIM).
The following examples illustrate (IM) and (PIM).
Example 1 Consider the following function F(x)=x?> on C={x=0}. It
follows that Fis (IM) to #(y, x) =e”—e* since
73, %) [F(y) — F(x) ]
=(y—x) 1+ 0+ /24 (*+3x+22) /31+) [(3—2) (y+2) ] 20.
Example 2 The following function
F(x) =—x(x<0); 0(x=0)
defined on C=R is not (IM) but (PIM) to the same #(y, x) =e*—e*.
In case that y<x=0, we get (3 x)[F() —Fx)]=(e—e) (—y+2) <
0, which means that Fis un- (IM). If, however, (3 x) F(x) =20, then y=
% together with #(y, x) F(y) 20. Therefore Fis (PIM) to the 7(y, x).
Definition 3 A Differentiable function fis said to be invex (IX) to a func-
tion #: C*— R™ if, for each x,yin C, it follows that f(y) —f(x) 2 7 (3, ©)TVf(x).
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Differentiable fis said to be pseudo invex (PIX) to a function 7: C*—> R" if,
for each x, v in Cwith #(y, x)7f(x) 20, it follows that f(y) —f(x) =0.
It follows that (IX) means (PIX). A function f{x) =x+sinx on C={0=
¥<z/2} is (IX) to #(y, x) = (y+siny—x—sinx) /(1+cosx), because
f(9) —f(x) = y+siny— (x+sinx) =5 (y, %) f'(x).

3. Variational-like Inequality Problems

In this section we treat variational-like inequality problems with respect

to a parameter function 7 in order to find the following x, in C such that
7(3, %)TF (%) 20 for yin C, (VLIP)

which plays an important role in solving optimal solutions for (MP) by

utilizing the invex idea. We introduce definitions of hemi-continuity and

invex sets. One means the continuity on linear segments and the other is an

extension of convexity.

Definition 4 A function F is called hemi-continuous on C if for % yin C,

yTF(x+1y) is continuous on the closed interval [0, 1] in R.

Definition 5 A set M in R"is an invex set to #: C*—> R" if, for each x, yin C

and #in [0, 1], it follows that x+ #(y, x) in C.

It can be easily seen that Cis convex when Cis invex to y—=x. In the fol-
lowing example we show a different property of invex sets from that of
convex sets.

Example 3 Let a subset M in R? be invex to #(y, x) =y on C=R?*XR%
Denote vectors ¢, = (1, 0)” and e,= (0, 1)”. Assume that ¢, ¢ €M. Then we
get

M=({1=£x<0} X R) U (RX{1=y<o0}).

The following definition, lemma and theorem concerning KKM-functions
play a significant role in guaranteeing the existence of optimal solutions of
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(MP).

Definition 6 A function V: R™—2R" the power set of R" is called KKM-
Junction if, for every finite set A={x;, x,, -+ , %} in R” the convex hull
conv(A) is contained in U{V(x;): i=1, -+ , m}.

Lemma 1 ([4]) Let a subset 4 in R” be non-empty and V: A—2E" 3 KKM-
function. If V(x) is compact for xin A, then N{V(x):xin A} #* ¢.
Lemma 2 (Lemma 5.2 in [9]) Let Cin R”be non-empty, compact and con-
vex. Let a function 7 be continuous, linear in the first argument and
7(x ») +7(,2)=0 on C? If Fis (PIM) to # and hemi-continuous on C,
then the following statements (I)-(II) are equivalent each other.
(I) xin C satisfies (VLIP) to (3, x).
(II) xin C satisfies 7 (3, x)"F(y) 20 for any yin C.

The above conditions of the parameter function » and the continuity of F
are weakened as follows.
Lemma 3 (Extension of Lemma 2) Let £ in R” be non-empty, compact and
convex. Let a function # be linear in the first argument and 7 (x, x) =0 for
xin C. If Fis (PIM) to # and # (y, x)TF(x) is upper-semicontinuous in x,
then the following statements (I)-(II) are equivalent each other.

(I) xin C satisfies (VLIP) to #(y, x).

(II) xin C satisfies 7 (y, x)"F () =0 for any yin C.

Proof. (I) Let an x in C satisfy (3, x)7F(x) 20 for any y in C. Because
of the (PIM) of F it follows that (II) holds,
(II) Let an xin C satisfy #(y, x)TF(y) 20 for any yin C. Putting w=x+¢
(y—x) for tin [0, 1], from w in C, then we have #(w, x)"F(w) =20. By the
linearity of » and #(x, x) =0, we get

0= n(x+t(y-x), x)TF(w)
=7(x 2)TF(w) + {7 (3, £)7F(w) =7 (x 2)"F(w)]
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=tn(y, 0)"F(w),
then 7 (y, x)7F (w) 20 for >0, This means that
Ii113§}1pﬂ(y, 2)TF(v) gliq}:c,ypﬂ(y, x)TF(w) =20. From the upper-semiconti-
nuity, we have 7 (3, x)"F(x) zlirrbgsypﬂ(y, %)TF(v) =20. Therefore
7 (¥, x)TF(y) 20 means that #(y, x)7F(x) 0. Q.E.D.

4. Existence Criteria for Invex Optimization Problems

In [9] authors gave the following existence criteria for invex problems.
Theorem R1 Assume that the same conditions of Lemma 2 hold. Then
(VLIP) to # has at least one optimal solution in C.

In this studying we have an extension of the above criteria as follows.
Theorem 1 Assume that the same conditions of Lemma 3 hold. Then
(VLIP) to # has at least one solution in C.

In order to prove the above theorem we prepare the following lemma.
Lemma 4 Let Cin R” be the same in Lemma 3. Then a subset

Vi(» ={xin C: (3 x)"F(x) 20} (yin C) is a KKM-function.

Proof. Let {3, 3, -+ , ¥} in Cand ii]la,:l with @; =0 for ¢=1,2, -+ ,
n. Suppose that V; is not KKV, i. e, there exists some y=§]} a;y; a;y; in C
such that yis not in U{V (y;):i=1,...n} Then »(y;, )7F(y) <0 for any 7 and
iZ:]lafn(yf, y)'F(y)<0. Since #(x, y) is linear in z,
0=7(y y)TF(y)=77(élafyh y)TF(y)=§am(yf, y)" F(y)<0, which means
a contradiction. Thus V; is a KKM-function. Q. E.D.
We shall prove Theorem 1.

Proof of Theorem 1. From Lemma 4, the function Vi is a KKM-
function. Since Cis bounded, V() is bounded for yin C. V,(y) is a closed
subset in C, because # (3, x)TF(x) is upper-semicontinuous in x. Then V; (y)
is compact in C for . From Lemma 1, we have N{Vi(y):y in C}#4,
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which means that (VLIP) has at least one solution in C. Q.E.D.

In [9] authors discussed the existence of optimal solution of (MP) under
that the objective function f is differentiable and V/ is (PIM). The
latter means that fis (PIX). They mentioned that (PIX) is equivalent
(IX) in case where fis an R-valued function. However, the proof of the
equivalence between (PIX) and (IX) is not complete. In the following exis-
tence theorem for (MP) we give sufficient conditions that piecewise
smooth fis (PIX) rather than (PIM) of Vf and the upper semi-continuity
of (3, x)7F(x) in x.

Let a function f be piecewise smooth on an bounded open set Cin R
There exist at most finite points x; in C, 7=1,2, ----~ , n, such that there
exists no V£(x;). Denote

V() ZliI?E}lp Vf(x), where fis not differentiable at y. (H)
In what follows we assume that piecewise smooth function satisfies (H).
Then it follows that fis upper semi-continuous on C.
Example 4 (i) Let f(x)=|x] for x in R. When f satisfies (H), f'{x) =
—1(x<0); f(x)=1(x=0). Thus f is upper semi-continuous.
(ii) Let xin C=[—4, 4] and let f(x) :lefor —4=<x<0; flx)=xfor 0=x<1,
Flx) =22 for 1<x<4. fis neither convex nor concave. Suppose that f
satisfies (H). Then
F(x)=—1 for —4=x<0; f/(x) =1 for 0=x=1; fx) =1/ (2x%) for 1<x=4.
Thus f” is upper semi-continuous.

Let Cin R"be an convex open set and £: C— R"be differentiable. In [9]
they discussed the relation of between (PIM) of the gradient V/and (PIX)
of fto the parameter function 7: C*~ R" with a positive condition that 7(3,
%) >0 for %,y in C. We improve Theorem 4.7 in [9] and give a correct
theorem.
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Theorem 2 Let Cin R”be a non-empty convex open set and f: C— R" be
differentiable. Assume that V/fis (PIM) to #(y, x) =k(y—x) for x, 3 in C,
where £ is a positive number. Then fis (PIX) to 7.

Proof. Let #(y x)"VA(x) 20 for x,y in C. Property (PIM) of Vf means
that 7(y, x)*Vf(y) 20 holds provided with #(y, x)"Vf(x) =0. Putting w=
x+t(y—x) for £in [0,1] and x,yin C, we get 0=z (w, )"V A (w) =kt(y—
£)"Vf(w) and 0= (y—x)"Vf(x+¢(y—x)), which means that, by integrating
over [0, 1], 0= f(y) —f(x). Thus fis (PIX) to 7. Q.E.D.

We give the following theorem which has improved conditions of Theo-

rem 5.3 in [9].
Theorem 3 Let Cin R”be a non-empty convex compact set. Suppose that
fis continuous and piecewise smooth and that f satisfies (H). Assume
that Vfis (PIM) to #(y, x) =k(y—x) for x, yin C, where £2>0 and that
7 (3, x)"Vf(x) is upper semi-continuous in x. Then there exists at least one
optimal solution of (MP) in C.

Proof. The parameter #(y, x) =k(y—x) is linear in the first variable and
satisfies 7 (x, ) =0 for any xin C. From Theorem 1, (VLIP) to # and F=
Vf has at least one solution in C, i.e, an x in C satisfies #(y,x)7Vf(x) =0.
Because of (PIM) of Vfto #(y, x) =k(y—x), by Theorem 2, fis (PIX) to 7.
Then, by the definition of (PIX), the x satisfies f(y) 2f(x) for y in C.
Therefore (MP) has an optimal solution x. Q.E.D.

In order to treat the existence and uniqueness of optimal solution of
(MP), we introduce the strict pseudo invexity to a parameter function.
Definition 7 Let Cin R" be an open set, /: C— R" be differentiable and 7:
C*— R". Function fis called strictly pseudo invex (SPIX) to #, if f(y) > f(x)
holds provided with # (3, x)"Vf(x) 20 for x#y in C. Function F: C—»R" is
called strictly pseudo invex monotone (SPIM) to 7z, if #(y, x)TF(y) >0 holds
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provided with # (3 x)7F(x) 20 for x#yin C.

In the following lemma we deal with the existence of solution for (VLIP)

under conditions that F is (SPIM) and is not hemi-continuous but upper
semi-continuous.
Theorem 4 (Extension of Corollary 5.1 in [9]) Let Cin R” be non-empty,
compact and convex. Let a function 7 be linear in the first argument and
7(x x)=0 for x in C. If Fis (SPIM) to # and 7(y, x)TF(x) is upper semi-
continuous in x. Then (VLIP) to 7 has at least one solution in C.

Proof. The above lemma can be proved in the similar way of the proof
of Theorem 1. Q.E.D.

In the following theorem we get a criterion for the existence and unique-

ness of optimal solutions for (MP).
Theorem 5 (Extension of Theorem 5.4 in [9]) Let Cin R”be a non-empty
convex compact set. Suppose that f is continuous and piecewise smooth
and that fsatisfies (H). Assume that V/fis (SPIM) to »(y, x) =k(y—x) for
%, yin C, where £>0 and that 7 (3, x)"Vf(x) is upper semi-continuous in x in
C. Then there exists at least one optimal solution of (MP) in C.

Proof. The above Theorem can be proved in the similar way of the
proof of Theorem 3. Q.E.D.

We illustrate the above criterion for the existence and uniqueness of opti-
mal solution to (MP).

Example 5 Let C=[—4, 4] be convex and compact in R. Consider an R-
valued function
Flx) =|x| for —4=x<0; f(x) =x for 0=x<1;f(x) =x"* for ISx=4.

Then f is piecewise smooth and neither convex nor concave. Assume
that f satisfies Property (H). Let 7 (3, x) =k(y—x) with £2>0.
(i) It follows that the gradient of fis as follows.
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fx)=—1 for —4=x<0;/(x) =1 for 0=x=1;f (x)
=1/(2x"?) for 1<x=4.
Thus f* is upper semi-continuous.
(ii) If (y—x)f(x) 20 holds, then (y—=x)(y) >0. Thus f’ is (SPIM).
(iii) If (y—=x)/"(x) 20 holds, then f(y) > f(x). Thus fis (SPIX).
(iv) The minimum of f over Cis uniquely attained at x¥=0, and minf(x) =

0.
5. Applications Concerning Walrasian Equilibrium

In this section we treat an exchange economy with price vector p= (py, b,
""" , b7 in the k-dimensional linear space R* and induced aggregate

excess demand function z: D—>R* Let C be a subcone in the positive

orthant RE={p= (b1, py, =, p)": 20, i=1, 2 -, &} and S’i={pinR’i:

M~

pi= 1}. Denote the interior of R4by R %. Let D =S%nC. In usual z(p)

=

will be homogeneous of degree zero in p and will satisfy Walras’s law, i.e.,

for a>0 and p in D, z(ap) =z(p) holds; p"z(p) =0 on C. Moreover we

assume that z is continuous on D. See [3] in details.

Example 6 Consider an excess demand of the Cobb-Douglas for two goods
2 (p) = (am/p) — 21, 2(p) = (am/p;) —x,

where p= (py, p,)7, m=p,x,+px, is money income, x; is the demand for

goods ¢ for 7=1.2, and « is a positive constant. The equality p"z(p) =0

means that a=1/2. Then z(p) =0 for any p.

Definition 8 A price vector p*in D is called a Walrasian equilibrium if

z(p*) =0 in R~

[3] showed equivalent conditions for the Walrasian equilibrium as follows.

Theorem 6 A price vector p* in D is a Walrasian equilibrium satisfies the
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following conditions (a) and (b) each other.
(a) z(pHT(p—p* =0 for p in S%
(b) z(p®7Tp=0 for pin S~
Moreover assume that z is monotone on D, i.e,,

[2(p) —2(@) 1 T(p—¢q) 20 for p, ¢ in D.
Then the above (a) and (b) are equivalent to the following conditions (c)
and (d) mutually.
(c) z(p)T(p—p* =0 for pin D.
(d) z(p)"p*=0 for pin D.

In [5] they get a sufficient condition for the existence of the Walrasian
equilibrium.

Theorem 7 Let D be compact and convex and let z: D— R* be continuous.
Then there exists at least one Walrasian equilibrium in D.

Finally, under weakened conditions that the set D is not necessarily com-
pact but bounded and that z is not continuous but upper semi-continuous,
we show some kind of possibility to the existence of a set of the Walrasian
equilibriums.

Theorem 8 Let D be bounded and convex in R* Let —z be (PIM) to
7{q, p) =q—p and 7(q, p)*(—z(p)) lower semi-continuous in p for each ¢ in
D.

Then there exists at least one solution p* for the following variational in-

equality problem
(g—p®7z(p® <0 for any ¢in D.

Proof. Since D is convex and —z is not monotone but (PIM) to
by Theorem 1, there exists at least one solution p* for the variational in-
equality problem (¢g—p*7(—2z(p*)=0 on D. Therefore p* satisfies (g—
pN7Tz(p* <0 for any ¢ in D. Q.E.D.
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6. Concluding Remarks

In the previous section we get the existence criterion for variational in-
equality problems via methods of the invex idea under the conditions that
given functions are not continuous but semi-continuous and that the feasible
sets are not bounded. Our aim of this investigation is to find the Walrasian
equilibrium in the set D where the aggregate excess demand function is
defined. In order to show the existence of the equilibrium we need to prove

that the conclusion of Theorem 9 holds true on the wider set S, than D.
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